Text/non-text image classification in the wild with convolutional neural networks

نویسندگان

  • Xiang Bai
  • Baoguang Shi
  • Chengquan Zhang
  • Xuan Cai
  • Li Qi
چکیده

Text in natural images is an important source of information, which can be utilized for many real-world applications. This work focuses on a new problem: distinguishing images that contain text from a large volume of natural images. To address this problem, we propose a novel convolutional neural network variant, called Multi-scale Spatial Partition Network (MSP-Net). The network classifies images that contain text or not, by predicting text existence in all image blocks, which are spatial partitions at multiple scales on an input image. The whole image is classified as a text image (an image containing text) as long as one of the blocks is predicted to contain text. The network classifies images very efficiently by predicting all blocks simultaneously in a single forward propagation. Through experimental evaluations and comparisons on public datasets, we demonstrate the effectiveness and robustness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification with Convolutional Neural Networks

Text in natural images contains rich semantics that are often highly relevant to objects or scene. In this paper, we focus on the problem of fully exploiting scene text for visual understanding. The main idea is combining word representations and deep visual features into a globally trainable deep convolutional neural network. First, the recognized words are obtained by a scene text reading sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2017